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Fractal structure of a dissipative particle-fluid system in a time-dependent chaotic flow
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Motion of rigid particles under the effects of pressure force, added mass effect, and Stokes drag is in-
vestigated in the incompressible, time-dependent flow in a two-dimensional rectangular cavity. It is
shown that rigid particles in a viscous flow constitute a dissipative system with a negative volume con-
traction exponent and become trapped by strange attractors. Two methods are used to compute
Lyapunov exponents of particle motion, and several methods are used for fractal dimensions of the at-
tractors. Results obtained from these methods are in good agreement with each other.

PACS number(s): 47.55.Kf, 47.52.+j, 47.53.+n, 47.15.Rq

Passive tracers in a fluid flow comprise a class of.

dynamical systems widely encountered in nature, science,
and engineering. Examples include the transport of pol-
lutants in the atmosphere’ and the ocean, experimental
flow visualization techniques, and multiphase flows used
in chemical and petrochemical processes. Several recent
studies have focused on the dynamics of particle motion
in both laminar and turbulent flows as predicted by
different approximated versions of the particle equations
of motion, and a variety of particle behaviors, both
chaotic and regular, have been identified [1-4]. Howev-
er, in most of these studies, the fluid flow field was as-
sumed to be steady; by and large, the effects of time-
dependent flow fields on particle motion have not been
discussed. Moreover, many of the flows investigated in
these studies were based on highly simplified models, and
the applicability of previously obtained results to real sys-
tems is uncertain.

This paper communicates several results concerning
the motion of small rigid particles in realistic fluid flows.
It is shown here the such motions can be dissipative and
generate strange attractors for a variety of flow and parti-
cle conditions. The physically realizable flow in a two-
dimensional rectangular cavity with an aspect ratio of
H /L =0.6, where H is the height of the vertical walls
and L is the width of the horizontal walls, is chosen as a
case study. The flow is incompressible and time-
dependent and is the combination of two piecewise steady
flows generated by alternatively moving each of the hor-
izontal walls for a fixed amount of time while keeping the
vertical walls stationary (a detailed description of this
flow has been provided elsewhere; see Refs. [5,6]). The
main flow parameter T is defined as the combined dis-
placement of both horizontal walls during one period di-
vided by the length of the cavity. Our study is restricted
to cases with a Reynolds number Re=p;UL /u < 1.0,
where pp is the fluid density, u is the fluid viscosity, and
U is the wall velocity. This range of Re yields a creeping
flow with minimal inertial forces. Since no analytical
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solution is available, the flow field is obtained numerically
using a finite difference scheme to solve the full Navier-
Stokes equations. As is shown elsewhere [6], simulated
mixing results agree well with experiments [5].

In this study, small rigid spherical particles are treated
as passive tracers, i.e., the effect of particles on the flow
field is not considered. Particle concentration is small,
and particle-particle interactions are neglected. We
adopt the particle equation of motion derived by Maxey
and Riley for particles moving under the effects of pres-
sure force, added mass effect, and Stokes drag [7]. For a
steady flow, this equation can be rearranged and nondi-
mensionalized as

%=(l/Sd,,g)[u-v]+M[u+v/2]-Vu , (1
where u is the fluid velocity and v is the particle velocity.
The parameter Sg,, =(1+2y)a’Re/(9L?) indicates the
relative importance of Stokes drag (for a given flow, a
larger value of Sy,,, indicates a larger or a heavier parti-
cle), and M =2/(2y +1), where ¥y =pp /pp, a is the parti-
cle radius, and pp is the particle density. Equation (1) is
strongly nonlinear and for most flows must be integrated
numerically to obtain the particle velocity. Particle tra-
jectories can then be found by integrating the equation
dx/dt =v.

In a recent experimental study, Sommerer and Ott [2]
showed that solid particles floating in the free surface of a
fluid can form strange attractors. They argued that such
attractors occurred because particles were restricted to
the surface of the fluid, and the divergence of such two-
dimensional (2D) motions can differ from zero, even if the
fluid is incompressible. The main point of this paper is to
show that strange attractors for motion of solid particles
can occur under much more general conditions. Fluid
particles in the truly 2D cavity flow have two degrees of
freedom, i.e., description of their motion requires a 2D
phase space, which is also the physical space. If the flow
is incompressible, the volume change in phase space is
V-u=0, the system is conservative, and the stream func-
tion plays the role of the Hamiltonian. On the other
hand, as is evident in Eq. (1), the motion of rigid particles
in a 2D flow has four degrees of freedom, i.e., it is embed-
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ded in a four-dimensional (4D) phase space. The particle

system is no longer conservative; the rate of change of
phase space volume V is (1/v)DV/Dt=—2/S,,. For
the cases examined in this paper, Sdrag < 1.0, and the sys-
tem is strongly dissipative. Moreover, V-v#0 even for
descriptions restricted to the 2D physical space, indicat-
ing that strange attractors are possible for rigid particles
both in the 4D phase space and in the 2D physical space.
In the more restricted context of the cavity flow, while
light particles (¥ <<1) converge to a point attractor for a
wide range of Sy,,, heavy particles (y >>1.0) are re-
pelled to the boundary walls. However, for y ~ 1, rigid
particles are often attracted either to quasiperiodic orbits
or to chaotic attractors.

Since previous studies have shown that fluid particles
undergo chaotic motion in the cavity flow for a wide
range of T [5,6], it is not surprising to observe chaotic
motion of rigid particles in this flow. However, chaotic
fluid motion and chaotic rigid particle motion show
significant differences. Figure 1(a) shows the Poincaré
section for the fluid particles in a periodic cavity flow at
T =2.0. The points in the figure are particle positions at
the end of each period. The flow is mostly regular, ex-
cept in narrow layers, the largest of which is readily ob-
served close to the cavity boundaries. Figure 1(b) shows
a Poincaré section for rigid particles (S, =0.2, ¥y =1.3)
under the same flow conditions. The figure was comput-
ed by placing a single particle at (xq,y,)=(0.7,0.3) and
following it for 60000 periods. The particle undergoes
chaotic motion within a fractal attractor. The structure
of this attractor is significantly different than the struc-
ture of Kolmogorov-Arnold-Moser (KAM) surfaces and
chaotic regions in the underlying flow. Comparison of
Figs. 1(a) and 1(b) readily reveals that the rigid particle
repeatedly crosses KAM surfaces of the underlying flow.

A wide variety of attractor structures are observed for
different flow conditions. Figure 1(c) shows a rigid parti-
cle Poincaré section corresponding to T =4.2,
Sarag=0-2, ¥=0.5. Once again, the rigid particle is
confined to an attractor. Empty regions of different sizes
coexist with regions populated by points, suggesting a
fractal attractor structure. Additional cases (now shown
here) demonstrate that the structure of the attractors de-
pends strongly on flow conditions. It should be pointed
out that particle attractors are not the product of periodi-
city; they also exist for aperiodic flows. Poincaré sections
cannot be used to investigate such cases, but attractors
can be generated using an alternative strategy where
40000 rigid particles, initially distributed uniformly in
the entire flow domain, are followed in time. The struc-
ture occupied by the particles at a given time has been
termed a ‘“‘snapshot attractor” [2]. Numerical results
show that a snapshot attractor approaches the Poincaré
attractor after a brief transient whose duration depends
on all three parameters Sg,;, ¥, and T. In general, the
more tenuous the attractor, the shorter the transient.
Figure 1(d) shows the snapshot attractor generated by an
aperiodic “symmetry breaking” sequence of wall motions
abbabaabbaababba . . . [8], where ‘“a” indicates motion
of the top wall and “b” indicates motion of the bottom
wall. Each wall motion lasts a time 7 /2=2.1, and parti-
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FIG. 1. (a) Poincaré section for fluid particles, T =2.0; (b)
Poincaré section for rigid particles, T=2.0, Sy, =0.2, and
v=1.3; (c) Poincaré section for rigid particles, T =4.2,
Sirag =0.2, and ¥ =0.5; (d) “snapshot attractor” for rigid parti-
cles in a symmetry-breaking flow, T =4.2, S,,,=0.2, y=0.5,
for a total time of 157.
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cle properties correspond to S;,,=0.2, y=0.5. As is
shown in Fig. 1(d), the rigid particles converge at an at-
tractor whose topology resembles that observed in Fig.
1(c) for the corresponding periodic case.

To qualify as strange attractors, the structures in Fig. 1
should exhibit (i) a positive largest Lyapunov exponent
along particle trajectories and (ii) a fractal dimension.
Both of these conditions are satisfied for the systems
studied here. We begin with the analysis of the
Lyapunov exponent A;=lim,_, {(1/8)n[l(¢)/1(0)]},
where [(2) is the distance between two neighboring parti-
cles at time t. Two Lyapunov exponents can be found for
trajectories in the 2D physical space. If the system is
chaotic, the largest exponent A; must be positive. A sim-
ple relation exists between the Lyapunov exponents
Ay, A, and the volume contraction exponent o, i.e.,
o=lim,_, ,{(1/t)In[AA(t)/AA(0)]}=A,+A,, where
A A(1) is a differential of area in physical space. For a
dissipative system, A, >0, A, <0, |A,| > |A,[, and o <O.

Two different methods have been used to compute
Lyapunov exponents. In the first method, I(¢) and
A A (t) are computed directly from the equations

——=1(t)(Vv), ————=AA(t)V-v); )

dl(t) dAA(t)
dt dt

the velocity derivatives needed for Vv and V-v are ob-
tained by differentiating Eq. (1) along particle trajec-
tories. In the second method, five particle trajectories are
followed in the 4D phase space; one of the trajectories is
chosen as a reference, and I(t¢) is found from the distances
of the remaining four trajectories to the reference trajec-
tory. Lyapunov exponents are then obtained using a
Gram-Schmidt renormalization procedure [9]. The two
methods give almost identical results. Computations for
(T,S84rag,7)=(2.0,0.2,1.3)  yield 1,=0.023%0.002,
A,=—0.08610.001, and o= —0.063£0.003; similarly,
for (T,Sdmg,y)=(4.2,0.2,0.5), one gets A;=0.115
10.002, A,=—0.209+0.002, and o= —0.09410.004.
Since o is the long-time average of V-v, these results
show that V-v <0, demonstrating that strange attractors
are indeed possible for the rigid particle system.

To qualify as strange attractors, the rigid particle
structures in Fig. 1 must also be characterized by a frac-
tal dimension. Qualitatively, the structures in Fig. 1
“look fractal,” i.e. they display a wide length scale distri-
bution, and enlarged portions of each structure resemble
the whole structure [4]. To examine this point quantita-
tively, six different dimensions were calculated using four
numerical schemes. The first scheme, “box-counting,”
was used to compute the capacity dimension d,, the in-
formation dimension d;, and the correlation dimension
d . [10]. The attractor must have at least 300000
points for this scheme to give reasonably accurate results.
The second scheme computes the distances between all
possible pairs of points in the attractor and obtains the
correlation dimension d_,, from the slope of the probabil-
ity density function of distances [10]. Although it is com-
putationally costly to calculate the distance of every pair
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FIG. 2. Fractal dimension of strange attractors (solid line,
d.; short dashes, d;; small dots, d,; long dashes, d.,; and
dash-dots, d,). The upper group of curves corresponds to
(T,S4rag»7)=(4.2,0.2,0.5). The slopes of the curves yield the
dimensions d.=1.580+0.005, d;=1.530+0.004,
d o =1.46010.002, d ., =1.4301+0.003, d, =1.440+0.002, and
d; =1.55+0.02. The lower group of curves corresponds to
(T,S4rag,7)=(2.0,0.2,1.3) and yields the dimensions
d.=1.160+0.003, d;=1.1301+0.002, d . =1.060+0.004,
d .. =1.060+0.005, d, =1.040+0.005, and d; =1.26+0.02.

of points, this scheme gives accurate results with just
10000 points in the attractor. In the third scheme, a
small number of locations, N,, is chosen randomly, a cir-
cular domain of radius ¢ is centered at each location, and
N, (&), the number of points in each domain, is computed.
The fractal dimension d, is then obtained from the slope
of a plot of the number of points inside a domain vs the
domain radius. The last scheme computes the fractal di-
mension d; from the Kaplan-Yorke conjecture, which
for a 2D system is d; =1+A,/|A,|, where A, and A, are
the positive and negative Lyapunov exponents.

Results from these schemes are shown in Fig. 2 for the
same two cases as in Figs. 1(b) and 1(c). The lower group
of curves corresponds to (7,Sy,,,7)=(2.0,0.2,1.3),
and the upper group corresponds to (T,Sgg,7)
=(4.2,0.2,0.5); the slope of the curves are the fractal
dimensions. All of the curves display linear ranges,
indicating well defined fractal behavior. Moreover, since
each group of curves has about the same slope, the
figures demonstrate good agreement between the various
dimensions. The  attractor  corresponding to
(T, S 4rag>7 )=(2.0,0.2,1.3) has a dimension of about 1.1,
and the attractor for (7,8 y,,,7)=(4.2,0.2,0.5) has a di-
mension of about 1.5. The three dimensions obtained
from box counting are in consistent order d, =d;>d ..
It is also apparent that d . ~d ., ~d,. This is expected,
since these dimensions have similar physical meanings.
The relation of d; to the rest of each group is not clear.
While for (T,Sdmg,'y)=(4.2,0.2,0.5), d; =d; as predict-
ed by Ledrappier and Young [11], for
(T, S 4rag> ¥ )=(2.0,0.2,1.3)d; is about 10% larger than
any of the other dimensions. However, the remaining
five dimensions are in close agreement with one another.

In summary, it is shown that rigid particles in a
viscous flow constitute a dissipative system and can
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display strange attractors, and that while two-
dimensional time-periodic flows generate chaotic motions
of rigid particles, the structure of such motions exhibits
strong differences from the structure of the underlying
flow. These differences are important for many practical
applications involving rigid particles; a noteworthy exam-
ple is risk assessment in scenarios involving airborne par-
ticulate pollutants. As should be clear from the preced-
ing discussion, it is important to represent the motion of
rigid particles accurately, because qualitative predictions
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based on the structure of the underlying flow pattern can
contain large errors.
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FIG. 1. (a) Poincaré section for fluid particles, T =2.0; (b)
Poincaré section for rigid particles, T=2.0, S;,,=0.2, and
y=1.3; (c) Poincaré section for rigid particles, T=4.2,
Sirag=0.2, and y=0.5; (d) “snapshot attractor” for rigid parti-
cles in a symmetry-breaking flow, T'=4.2, §,,,=0.2, y=0.5,
for a total time of 15T.



